Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer

Colorectal Cancer

Int Immunopharmacol. 2020 Aug 6;88:106850. doi: 10.1016/j.intimp.2020.106850. Online ahead of print.


Targeted clearance of colorectal cancer stem cells (CCSCs) has become a novel strategy for tumor immunotherapy. Molecule mucin1 (MUC1) is one of targetable cell surface antigens in CCSCs. However, the critical role of MUC1 in anti-tumor effects of CCSC vaccine remains unclear. In the present study, we showed that MUC1 may be required for CCSC vaccine to exert tumor immunity. CD133+CCSCs were isolated from CT26 cell line using a magnetic-activated cell sorting system, and MUC1 shRNA or recombinant plasmid was further used to decrease or increase the expression of MUC1 in CD133+CCSCs. Mice were subcutaneously immunized with the CCSC lysates, MUC1 knockin CCSCs, and MUC1 knockdown CCSCs respectively, followed by a challenge with CT26 cells. We found that CCSC vaccine significantly reduced the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+ cells and ALDH+ cells in tumors. Moreover, CCSC vaccine markedly increased the cytotoxicity of NK cells and the splenocytes, and promoted the release of IFN-γ, Perforin, and Granzyme B, and also reduced the TGF-β1 expression. Additionally, CCSC vaccination enhanced the antibody production and decreased the myeloid derived suppressor cells and Treg subsets. More importantly, MUC1 knockdown partly impaired the anti-tumor efficacy of CCSC vaccine, whereas MUC1 overexpression dramatically enhanced the CCSC vaccine immunity. Overall, these results reveal a novel role and molecular mechanisms of MUC1 in CCSC vaccine against colorectal cancer.