Recent updates on the resistance mechanisms to epidermal growth factor receptor tyrosine kinase inhibitors and resistance reversion strategies in lung cancer

Lung Cancer

Tripathi SK, et al. Med Res Rev 2020 - Review.


Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to a substantial improvement in the prognosis of lung cancer patients by explicitly targeting the activating mutations within the EGFR. Initially, patients harboring tumors with EGFR mutations show progression-free survival and improvement in the response rates toward all-generation EGFR-TKIs; however, these agents fail to deliver the intended results in the long-term due to drug resistance. Therefore, it is

necessary to recognize specific cardinal mechanisms that regulate the resistance phenomenon. Understanding the intricate mechanisms underlying EGFR-TKIs resistance in lung cancer could provide cognizance for more advanced targeted therapeutics. The present review features insights into current updates on the discrete mechanisms, including secondary or tertiary mutations, parallel and downstream signaling pathways, acquiring an epithelial-to-mesenchymal transition (EMT) signature, microRNAs (miRNAs), and epigenetic alterations, which lead to intrinsic and acquired resistance against EGFR-TKIs in lung cancer. In addition, this paper also reviews current possible strategies to overcome this issue using combination treatment of recently developed MET inhibitors, allosteric inhibitors or immunotherapies, transformation of EMT, targeting miRNAs, and epigenetic alterations in intrinsic and acquired EGFR-TKIs resistant lung cancer. In conclusion, multiple factors are responsible for intrinsic and acquired resistance to EGFR-TKIs and understanding of the detailed molecular mechanisms, and recent advancements in pharmacological studies are needed to develop new strategies to overcome intrinsic and acquired EGFR-TKIs resistance in lung cancer.