In vivo study of anti-epidermal growth factor receptor antibody-based iron oxide nanoparticles (anti-EGFR-SPIONs) as a novel MR imaging contrast agent for lung cancer (LLC1) cells detection

Lung Cancer

IET Nanobiotechnol. 2020 Jul;14(5):369-374. doi: 10.1049/iet-nbt.2019.0385.


Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR-SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm-1 relates to Fe-O, which verified the formation of the anti-EGFR-Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm-sized for nanoparticles and the anti-EGFR-SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non-specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti-EGFR-SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.