FGFR1 is critical for Rbl2 loss-driven tumor development and requires PLCG1 activation for continued growth of small cell lung cancer

Lung Cancer

Cancer Res. 2020 Sep 24:canres.1453.2020. doi: 10.1158/0008-5472.CAN-20-1453. Online ahead of print.


Small cell lung cancer (SCLC) remains a recalcitrant disease where limited therapeutic options have not improved overall survival and approved targeted therapies are lacking. Amplification of the tyrosine kinase receptor FGFR1 (fibroblast growth factor receptor 1) is one of the few actionable alterations found in the SCLC genome. However, efforts to develop targeted therapies for FGFR1-amplified SCLC are hindered by critical gaps in knowledge around the molecular origins and mediators of

FGFR1-driven signalling as well as the physiological impact of targeting FGFR1. Here we show that increased FGFR1 promotes tumorigenic progression in precancerous neuroendocrine cells and is required for SCLC development in vivo. Notably, Fgfr1 knockout suppressed tumor development in a mouse model lacking the retinoblastoma-like protein 2 (Rbl2) tumor suppressor gene but did not affect a model with wild-type Rbl2. In support of a functional interaction between these two genes, loss of RBL2 induced FGFR1 expression and restoration of RBL2 repressed it, suggesting a novel role for RBL2 as a regulator of FGFR1 in SCLC. Additionally, FGFR1 activated phospholipase C gamma 1 (PLCG1) while chemical inhibition of PLCG1 suppressed SCLC growth, implicating PLCG1 as an effector of FGFR1 signaling in SCLC. Collectively, this study uncovers mechanisms underlying FGFR1-driven SCLC that involve RBL2 upstream and PLCG1 downstream, thus providing potential biomarkers for anti-FGFR1 therapy.