Genipin enhances the antitumor effect of elesclomol in A549 lung cancer cells by blocking uncoupling protein-2 and stimulating reactive oxygen species production

Lung Cancer

Oncol Lett. 2020 Dec;20(6):374. doi: 10.3892/ol.2020.12237. Epub 2020 Oct 21.


The uncoupling protein-2 (UCP2) serves a role in tumor aggressiveness and anticancer resistance, which is considered to be associated with its ability to attenuate reactive oxygen species (ROS) production. We hypothesized that UCP2 may protect cancer cells from elesclomol-induced cytotoxicity, and that this may be overcome by blocking UCP2 function with genipin. In A549 lung cancer cells that exhibited high UCP2 expression, treatment with elesclomol alone induced limited changes in glucose

uptake, ROS production and cell survival. By contrast, both UCP2 knockdown and genipin treatment mildly reduced glucose uptake, increased ROS production and decreased cell survival. Combining genipin and elesclomol further reduced glucose uptake and increased cellular and mitochondrial ROS production. Moreover, co-treatment with genipin and elesclomol reduced the colony forming capacity to 50.6±7.4% and the cell survival to 42.0±3.4% of that in the control cells (both P<0.001). Suppression of cell survival by treatment with elesclomol and genipin was enhanced in the presence of an exogenous ROS inducer and attenuated by a ROS scavenger. The cytotoxic effects of combining genipin and elesclomol were accompanied by reduced mitochondrial membrane potential and occurred through apoptosis as demonstrated by Annexin V assay and increased protein cleavage of PARP and caspase-3. Finally, in an A549 ×enograft mouse model, tumor growth was only modestly retarded by treatment with elesclomol or genipin alone, but was markedly suppressed by combining the two drugs compared with that in the control group (P=0.008). Therefore, high UCP2 expression may limit the antitumor effect of elesclomol by attenuating ROS responses, and this may be overcome by co-treatment with genipin; combining elesclomol and genipin may be an effective strategy for treating cancers with high UCP2.